internal and external energy sources relative to the body considered; W, specific power supplied to a unit volume of the body from external and internal energy sources; U, specific internal energy of the body; V, volume of the body; v, carrier propagation velocity; S, number of species of body particles; λ and a, thermal conductivity and thermal diffusivity; c, specific heat; ρ, body density; F, total effective cross section of particle absorption of unit volume; ε, energy emission coefficient; ε_{v}, emission coefficient of photons of frequency v by body particles; $n_{i v}$, density of particles found at frequency v at the i-th energy level; h, Planck's constant; Fo, Fourier number; and Ei, integral exponential function.

LITERATURE CITED

1. N. I. Nikitenko, Theory of Heat and Mass Transfer [in Russian], Kiev (1983).
2. C. Kittel, Elementary Statistical Physics, Wiley, New York (1958).
3. N. I. Nikitenko, Zh. Fiz. Khim., 52, No. 4, 866-870 (1978).
4. S. Chandrasekhar, Radiative Transfer, Dover, New York (1960).
5. " G. C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon Press, Oxford (1973).
6. D. Michalas and B. W. Michalas, Foundations of Radiation Hydrodynamics, New York (1984).
7. V. M. Amrosimov, B. I. Egorov, N. S. Lidorenko, and N. B. Rubashov, Fiz. Tverd. Tela (Leningrad), 2 , No. 2, 147-149 (1969).

TEMPERATURE FIELD IN A HALF-SPACE WITH A FOREIGN INCLUSION
Yu. M. Kolyano, Yu. M. Krichevets,
UDC 536.24
E. G. Ivanik, and V. I. Gavrysh

A stationary temperature field is studied in a half-space containing a heat-liberating disclike foreign inclusion of small size. Convective heat transfer with the external medium is realized through its boundary surface.

Let us consider an isotropic half-space containing a foreign cylindrical inclusion of radius R and height Z at a distance d from its boundary surface, where uniformly distributed internal heat sources of intensity qo act. Let the body under consideration be referred to a cylindrical coordinate system. We place the origin at the center of the inclusion. Convective heat transfer with the external medium of temperature t_{c} is given at the boundary surface $z=\ell-d$.

To determine the stationary temperature field, we have the heat-conduction equation [1]

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left[r \lambda(r, z) \frac{\partial \Theta}{\partial r}\right]+\frac{1 \partial}{\partial z}\left[\lambda(r, z) \frac{\partial \Theta}{\partial z}\right]=-q_{0} S_{-}(R-r) N(z) \tag{1}
\end{equation*}
$$

where $\Theta=t-t_{\mathrm{c}} ; N(z)=S_{-}(z+l)-S_{+}(z-l)$.
The boundary conditions are written in the form

$$
\begin{gather*}
\lambda_{1} \frac{\partial \Theta}{\partial z}=\alpha_{z} \Theta \text { for } z=-l-d, \Theta=0 \text { for } r, z \rightarrow \infty, \tag{2}\\
\frac{\partial \Theta}{\partial r}=0 \text { for } r \rightarrow \infty .
\end{gather*}
$$

Institute of Applied Problems of Mechanics and Mathematics, Academy of Sciences of the Ukrainian SSR, Lvov. L'vov Scientific-Technical Institute of Materials. Translated from Inzhen-erno-Fizicheskii Zhurnal, Vol. 55, No. 6, pp. 1006-1011, December, 1988. Original article submitted July 31, 1987.

We represent the heat-conduction coefficient in the form

$$
\begin{equation*}
\lambda(r, z)=\lambda_{1}+\left(\lambda_{0}-\lambda_{1}\right) S_{-}(R-r) N(z) \tag{3}
\end{equation*}
$$

Substituting (3) into (1) and differentiating according to the rule set up in [2], we arrive at the equation

$$
\begin{align*}
\Delta \Theta= & \left(K_{\lambda}-1\right)\left\{\left.\frac{\partial \Theta}{\partial r}\right|_{r=R-0} \delta_{+}(r-R) N(z)-\left[\left.\frac{\partial \Theta}{\partial z}\right|_{z=-l+0} \delta_{-}(z+l)-\right.\right. \\
& \left.\left.-\left.\frac{\partial \Theta}{\partial z}\right|_{z=l-0} \delta_{+}(z-l)\right] S_{-}(R-r)\right\}-\frac{q_{0}}{\lambda_{0}} S_{-}(R-r) N(z), \tag{4}
\end{align*}
$$

where

$$
\delta_{ \pm}(x)=\frac{d S_{ \pm}(x)}{d x}
$$

The exact solution of the differential equation (4) can be obtained by the method proposed in [1] by using the representation of the temperature on the inclusion boundaries in the form of Fourier series. However, for small size inclusions $\left(\frac{l}{d}=\frac{R}{d} \leqslant \frac{1}{20}\right)$ the problem can be simplified considerably by assuming that the excess temperature over the inclusion thickness varies according to a linear law

$$
\begin{equation*}
\Theta(r, z)=\boldsymbol{\vartheta}_{z}+\frac{z}{l} \boldsymbol{\vartheta}_{z}^{*} \tag{5}
\end{equation*}
$$

and equals its integral characteristic [3] along the radius

$$
\begin{equation*}
\vartheta_{r}=\frac{2}{R^{2}} \int_{0}^{R} r \Theta d r \tag{6}
\end{equation*}
$$

Here

$$
\begin{equation*}
\hat{\vartheta}_{z}=\frac{1}{2 l} \int_{-l}^{l} \Theta d z ; \quad \forall_{z}^{*}=\frac{3}{2 l^{2}} \int_{-l}^{l} z \Theta d z \tag{7}
\end{equation*}
$$

Then using (5)-(7), we obtain the following differential equation instead of (4)

$$
\begin{gather*}
\Delta \Theta=\left(K_{\lambda}-1\right)\left\{\left.\left[\frac{d \vartheta_{z}}{d r}+\frac{z}{l} \frac{d \vartheta_{z}^{*}}{d r}\right]\right|_{r=R-0} \delta_{+}(r-R) N(z)-\right. \tag{8}\\
\left.-\left[\left.\frac{d \vartheta_{r}}{d z}\right|_{z=-l+0} \delta_{-}(z+l)-\left.\frac{d \vartheta_{r}}{d z}\right|_{z=l-0} \delta_{+}(z-l)\right] S_{-}(R-r)\right\}-\frac{q_{0}}{\lambda_{0}} S_{-}(R-r) N(z)
\end{gather*}
$$

Applying the Hankel integral transform in the coordinate r to (8) and the boundary conditions (2), we arrive at an ordinary differential equation with constant coefficients

$$
\begin{align*}
& \frac{d^{2} \bar{\Theta}}{d z^{2}}-\xi^{2} \Theta-R\left\{(K _ { \lambda } - 1) \left[\left.\left(\frac{d \vartheta_{z}}{d r}+\frac{z}{l} \frac{d \vartheta_{z}^{*}}{d r}\right)\right|_{r=R-0} J_{0}(R \xi) N(z)-\right.\right. \\
- & {\left.\left[\left.\frac{d \vartheta_{r}}{d z}\right|_{z=-l+0} \delta_{-}(z+l)-\left.\frac{d \vartheta_{r}}{d z}\right|_{z=l-0} \delta_{+}(z-l)+\frac{q_{0}}{\lambda_{0}} N(z)\right] \frac{J_{1}(R \xi)}{\xi}\right\} } \tag{9}
\end{align*}
$$

and the following boundary conditions

$$
\begin{equation*}
\lambda_{1} \frac{d \bar{\Theta}}{d z}=\alpha_{z} \bar{\Theta} \text { for } z=-l-d, \bar{\Theta}=0 \text { for } \quad z \rightarrow \infty, \tag{10}
\end{equation*}
$$

where

$$
\bar{\Theta}=\int_{0}^{\infty} r \Theta J_{0}(r \xi) d r
$$

Solving the boundary-value problem (9) and (10) and then going over to originals by means of the inversion formula, we obtain the expression

$$
\begin{align*}
& T(r, z)=\left(1-K_{\lambda}\right)\left[\left.\frac{d \vartheta_{z}}{d r}\right|_{r=R-0} F_{1}(r, z)+\left.\frac{d \vartheta_{z}^{*}}{d r}\right|_{r=R-0} F_{2}(r, z)+\right. \tag{11}\\
+ & \left.\left.\frac{d \vartheta_{r}}{d z}\right|_{z=l-0} F_{3}(r, z)-\left.\frac{d \vartheta_{r}}{d z}\right|_{z=-i+0} F_{4}(r, z)\right]+\frac{1}{R} F_{5}(r, z)
\end{align*}
$$

where

$$
\begin{aligned}
& T(r, z)=\frac{\lambda_{0}}{R^{2} q_{0}} \Theta(r, z) ; \\
& F_{i}(r, z)=\int_{0}^{\infty} J_{0}(R \xi) J_{0}(r \xi) f_{i}(z, \xi) d \xi, i=1,2 ; \\
& F_{j}(r, z)=\int_{0}^{\infty} J_{1}(R \xi) J_{0}(r \xi) f_{j}(z, \xi) d \xi, j=3,4,5 ; \\
& f_{1}(z, \xi)=\frac{1}{\xi}\left[\operatorname{sh} l \xi \varphi_{1}(z, \xi)+\varphi_{2}(z, \xi)\right] ; \\
& f_{2}(z, \xi)=\frac{1}{\xi}\left[\left(\frac{\operatorname{sh} l \xi}{l \xi}-\operatorname{ch} l \xi\right) \varphi_{1}(z, \xi)+\varphi_{3}(z, \xi)\right] ; \\
& f_{3}(z, \xi)=\frac{1}{2 \xi}\left[\exp (-l \xi) \varphi_{1}(z, \xi)-\varphi_{4}(z, \xi)\right] ; \\
& f_{4}(z, \xi)=\frac{1}{2 \xi}\left[\exp l \xi \varphi_{1}(z, \xi)-\varphi_{5}(z, \xi)\right] ; f_{5}(z, \xi)=\frac{1}{\xi} f_{1}(z, \xi) ; \\
& \varphi_{1}(z, \xi)=\exp \xi z+\alpha(\xi) \exp [-\xi(2(l+d)+z)] ; \varphi_{2}(z, \xi)=N(z)- \\
& -\operatorname{ch} \xi(z+l) S_{-}(z+l)+\operatorname{ch} \xi(z-l) S_{+}(z-l) ; \\
& \varphi_{3}(z, \xi)=\frac{z}{l} N(z)+\left[\operatorname{ch} \xi(z+l)-\frac{\operatorname{sh} \xi(z+l)}{l \xi}\right] S_{-}(z+l)+ \\
& +\left[\operatorname{ch} \xi(z-l)+\frac{\operatorname{sh} \xi(z-l)}{l \xi}\right] S_{+}(z-l) ; \\
& \varphi_{4}(z, \xi)=2 \operatorname{sh} \xi(z-l) S_{+}(z-l) ; \varphi_{5}(z, \xi)=2 \operatorname{sh} \xi(z+l) S_{-}(z+l) ; \\
& \alpha(\xi)=\frac{\lambda_{1} \xi-\alpha_{z}}{\lambda_{1} \xi+\alpha_{z}} ;\left.\frac{d \vartheta_{z}}{d r}\right|_{r=R-0}=\frac{\Delta_{1}}{\Delta_{5}} ;\left.\frac{d \vartheta_{z}^{*}}{d r}\right|_{r=R-0}=\frac{\Delta_{2}}{\Delta_{5}} ; \\
& \left.\frac{d \vartheta_{r}}{d z}\right|_{z=l-0}=\frac{\Delta_{3}}{\Delta_{5}} ;\left.\frac{d \vartheta_{r}}{d z}\right|_{z=-l+0}=\frac{\Delta_{4}}{\Delta_{5}} ; \Delta_{5}=\operatorname{det}\left[A_{k n}\right] ; \\
& A_{k n}=\int_{0}^{\infty} J_{0}(R \xi) J_{1}(R \xi) \psi_{k n}(\xi) d \xi, A_{k m}=\int_{0}^{\infty} J_{1}^{2}(R \xi) \psi_{k m}(\xi) d \xi, A_{n n}=1+ \\
& +\int_{0}^{\infty} J_{0}(R \xi) J_{1}(R \xi) \psi_{n n}(\xi) d \xi, \quad A_{m m}=1+\int_{0}^{\infty} J_{1}^{2}(R \xi) \psi_{m m}(\xi) d \xi,
\end{aligned}
$$

$$
\begin{aligned}
& k=1,2,3,4, n=1,2, m=3,4, k \neq n, m ; \psi_{11}(\xi)=2 K \psi_{11}^{*}(\xi) ; \\
& \psi_{12}(\xi)=\frac{K}{\xi} \alpha(\xi) \beta(-2 d \xi)\left[\beta_{1}^{-}(-4 l \xi)+\frac{1}{l \xi}(2 \beta(-2 l \xi)-1-\beta(-4 l \xi))\right] ; \\
& \psi_{13}(\xi)=-\frac{K}{\xi} \beta_{1}^{-}(-2 l \xi) \beta_{2}^{+}[\alpha(\xi),-2(l+d) \xi] ; \\
& \psi_{14}(\xi)=\frac{K}{\xi} \beta_{1}^{-}(-2 \ell \xi) \beta_{2}^{+}[\alpha(\xi),-2 d \xi] ; \psi_{21}(\xi)=3 K \psi_{21}^{*}(\xi) ; \\
& \psi_{22}(\xi)=\frac{6 K}{\xi}\left\{1-\frac{2}{3} l \xi+\frac{1}{l}\left[\left(l+\frac{1}{\xi}\left(2+\frac{1}{l \xi}\right)\right) \beta(-2 l \xi)-\frac{1}{l l \xi^{2}}\right]-\right. \\
& -\alpha(\xi) \beta(-2 d \xi)\left[0,5 \beta_{1}^{+}(-4 l \xi)+\beta(-2 l \xi)+\frac{1}{l \xi}(\beta(-4 l \xi)-1+\right. \\
& \left.\left.\left.+\frac{1}{l \xi}\left(0,5 \beta_{1}^{+}(-4 / \xi)-\beta(-2 I \xi)\right)\right)\right]\right\} ; \\
& \Psi_{23}(\xi)=\frac{3 K}{\xi}\left[\frac{1}{l \xi} \beta_{1}^{-}(-2 l \xi)-\beta_{1}^{+}(-2 l \xi)\right] \beta_{2}^{-}[\alpha(\xi),-2(l+d) \xi ; \\
& \psi_{24}(\xi)=\frac{3 K}{\xi}\left[\frac{1}{l \xi} \beta_{1}^{-}(-2 l \xi)-\beta_{1}^{+}(-2 l \xi)\right] \beta_{2}^{-}[\alpha(\xi),-2 d \xi] ; \\
& \psi_{31}(\xi)=\left(K_{\lambda}-1\right) \psi_{31}^{*}(\xi) ; \psi_{32}(\xi)=\frac{K_{\lambda}-1}{\xi^{2}}\left[\frac{2}{l}-\left(\xi+\frac{1}{l}\right) \beta_{1}^{+}(-2 l \xi)+\right. \\
& \left.+\alpha(\xi) \beta[-2(l+d) \xi]\left(\xi \beta_{1}^{+}(-2 l \xi)-\frac{1}{l} \beta_{1}^{-}(-2 l \xi)\right)\right] ; \\
& \psi_{33}(\xi)=\frac{K_{\lambda}-1}{\xi} \beta_{2}^{-}[\alpha(\xi),-2(2 l+d) \xi] ; \\
& \psi_{34}(\xi)=\frac{K_{\lambda}-1}{\xi} \beta(-2!\xi) \beta_{2}^{+}[\alpha(\xi),-2 d \xi] ; \psi_{41}(\xi)=\left(K_{\lambda}-1\right) \psi_{41}^{*}(\xi) ; \\
& \psi_{42}(\xi)=\frac{K_{\lambda}-1}{\xi^{2}}\left\{\frac{2}{l}-\left(\frac{1}{l}+\xi\right) \beta_{1}^{+}(-2 l \xi)+\alpha(\xi) \beta(-2 d \xi)\left[\xi_{1}^{+}(-2 l \xi)-\frac{1}{l} \beta_{1}^{-}(-2 l \xi)\right]\right\} ; \\
& \psi_{43}(\xi)=\frac{K_{\lambda}-1}{\xi} \beta(-2 t \xi) \beta_{2}^{+}[\alpha(\xi),-2 d \xi] ; \psi_{42}(\xi)=\frac{K_{\lambda}-1}{\xi} \beta_{2}^{+}[\alpha(\xi),-2 d \xi] ; \\
& \psi_{11}^{*}(\xi)=\frac{1}{\xi}\left\{\beta_{1}^{-1}(-2 l \xi)-2 l \xi+0,5 \alpha(\xi) \beta(-2 d \xi)[(2-\beta(-2 l \xi)) \beta(-2 t \xi)-1]\right\} ; \\
& \psi_{21}^{*}(\xi)=\frac{\alpha(\xi)}{\xi} \beta(-2 d \xi)\left\{1-\beta(-4 l \xi)-\frac{1}{l \xi}[1+\beta(-2 l \xi)(\beta(-2 l \xi)-2)] ;\right. \\
& \psi_{31}^{*}(\xi)=-\frac{\beta_{1}^{-}(-2 l \xi)}{\xi} \beta_{2}^{+}[\alpha(\xi),-2(l+d) \xi] ; \\
& \psi_{41}^{*}(\xi)=\frac{\beta_{1}^{-}(-2 l \xi)}{\xi} \beta_{2}^{-}[\alpha(\xi),-2 d \xi] ; K=\frac{R}{4 l}\left(K_{\lambda}-1\right) ; \\
& \beta(\eta)=\exp \eta ; \beta_{1}^{ \pm}(\eta)=1 \pm \beta(\eta) ; \beta_{2}^{ \pm}[\alpha(\xi), \eta]=1 \pm \alpha(\xi) \beta(\eta) ;
\end{aligned}
$$

Δ_{k} follows from Δ_{5} because of replacement of $A_{n k}$ by $A_{n_{5}}, k, n=1,2,3,4$;

$$
\begin{gathered}
A_{k 5}=\int_{0}^{\infty} J_{1}^{2}(R \xi) \psi_{k 5}(\xi) d \xi ; \psi_{15}(\xi)=\frac{1}{4 l \xi} \psi_{11}^{*}(\xi) ; \\
\psi_{25}(\xi)=\frac{3}{4 l \xi} \psi_{21}^{*}(\xi) ; \quad \psi_{i 5}(\xi)=\frac{1}{R \xi} \psi_{i 1}^{*}(\xi), i=3,4 .
\end{gathered}
$$

Fig. 1. Dependence of the dimensionless excess temperature T on the relative radial coordinate p for $\mathrm{Bi}=0.1$ (a), axial coordinate Z for $\mathrm{Bi}=0.1$ (b) and for $p=0(c)$.

Using the electronic computer ES-1035 computations were performed of the dimensionless excess temperature T for the relative axial $\rho=r / R$ and axial $Z=z / R$ coordinates for the following initial data: $Z / R=1 ; \tau / d=1 / 20 ; K_{\lambda}=419$. The numerical results are presented in the figure.

Dependence of the values of T on ρ are shown in the Fig. a. The temperature in the domain of the inclusion $0 \leqslant \rho \leqslant 1$ decreases according to a linear law, where the lines are not parallel for different values of Z. The maximum temperature is achieved at the center of the inclusion $\rho=0, Z=0$ and exceeds the temperature at $\rho=0, Z=1$ by 1.4 times.

Dependences of the values of T on Z are represented in Fig. b for different values of 0 . A symmetric temperature distribution is observed in the interval $-4 \leqslant Z \leqslant 4$. Consequently, the function is $\varphi_{j}(z, \xi)=0(j=2,3,4,5)$ and, therefore, (11) is simplified.

The dependence of T on Z is illustrated in Fig. c for different values of the Biot criterion. It is seen that as the heat elimination grows the temperature diminishes for $Z<-1$ while it is practically independent of the magnitude of the heat elimination coefficient for $Z=-1$.

NOTATION

t. temperature field dependent on the cylindrical coordinates r and $z ; \lambda(r, z)$, heatconduction coefficient of an inhomogeneous body; λ_{1}, λ_{0}, heat-conduction coefficients of the main material and the inclusion; α_{z}, heat elimination coefficient from the surface $z=-l-d$; $K_{\lambda}=\lambda_{0} / \lambda_{1}$, criterion characterizing the relative heat conduction of the body; $s_{ \pm}(x)$, asymmetric unit function; $\Delta=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{\partial^{2}}{\partial z^{2}}$, Laplace operator $J_{v}(\eta)$, Bessel function of the first kind of order v.

1. Ya. S. Podstrigach, V. A. Lomakin, and Yu. M. Kolyano, Thermoelasticity of Bodies of Inhomogeneous Structure [in Russian], Moscow (1984).
2. R. M. Kushnir, On Solution of Thermoelasticity Problems for Piecewise-Inhomogeneous Bodies by Using Generalized Functions [in Russian], Dep. VINITI January 10, 1984, Dep. No. 323-84 (1984).
3. Yu. M. Kolyano and A. N. Kulik, Temperature Stresses from Bulk Sources [in Russian], Kiev (1983).

METHOD OF QUASI-GREEN'S FUNCTIONS FOR A NONSTATIONARY NOKLINEAR PROBLEM OF THERMAL RADIATION

M. D. Martynenko, M. A. Zhuravkov,

UDC 517.947.43
and E. A. Gusak
We derive a system of two nonlinear integral equations for the determination of a temperature field and the intensity of the incident radiation. The kernels of these equations are expressed in terms of a quasi-Green's function.

One of the methods for increasing the accuracy of thermal calculations consists in converting a boundary value problem of heat conduction to an equivalent integral equation [1]. Various methods can be used for this purpose (see, for example, [2, 4]). In what follows, this conversion is effected with the aid of the method of quasi-Green's functions [5]. The main advantages of this method are: the explicit form of the kernels of the integrand expressions; the incorporation of information relating to the geometry of the domain of integration directly into the kernels using the apparatus of the theory of R-functions [6]. With an appropriate choice of structure for the normalized equation of the domain of integration [6], we obtain Fredholm integral equations of the second kind.

We consider a nonlinear initial-boundary problem for a heat radiating body in which the thermophysical characteristics and heat sources are temperature-independent and in which heat exchange with an external medium is present on a convex surface S (see [7]):

$$
\begin{gather*}
\operatorname{div}(\lambda \operatorname{grad} u)-c \rho u_{t}=-W, P \in D, t>0 \tag{1}\\
u(P, 0)=\psi(P), P \in D \tag{2}\\
\lambda \frac{\partial u}{\partial n}+\alpha u=\varphi(P, t, u), P \in S, t>0 \tag{3}
\end{gather*}
$$

Here $\lambda=\Phi(\varphi, t)$ is the thermal conductivity coefficient; c is the specific heat coefficient; ρ is the density of the medium; W is the volumetric heat source or heat sink density,

$$
\varphi(P, t, u)=-\varphi_{0}(P, t)+\varphi_{1}(P, t, u)
$$

where $\varphi_{0}(P, t)=q_{\text {source }}(P, t)+\alpha u_{m}(P, t)+\varepsilon \sigma u_{m}^{4}(P, t)$ is the total heat flow supplied to $S ; \varphi_{1}(P, t, u)=\varepsilon \sigma u^{4}$ is the flow radiated in accordance with the Stefan-Boltzmann law. Here u_{m}, in turn, is the temperature of the external medium; σ is the Stefan Boltzmann constant; $\varepsilon=\varepsilon(u)$ is the degree of blackness of surface S.

If surface S contains a concave portion S_{1} or if there is an exchange of radiative flows with other surfaces, then in the boundary conditions (3) an additional term $\varepsilon \times E$ appears in the function $\dot{\varphi}_{1}(P, t, u)$ which accounts for radiation of heat on the concave surface S_{1}, and we then use the integral equations of radiant heat exchange
V. I. Lenin Belorussian State University, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal: Vol. 55, No. 6, pp. 1011-1014, December, 1988. Original article submitted August 12, 1987.

