
internal and external energy sources relative to the body considered; W, specific power 
supplied to a unit volume of the body from external and internal energy sources; U, specific 
internal energy of the body; V, volume of the body; v, carrier propagation velocity; S, 
number of species of body particles; % and a, thermal conductivity and thermal diffusivity; 
c, specific heat; p, body density; F, total effective cross section of particle absorption 
of unit volume; g, energy emission coefficient; E~, emission coefficient of photons of fre- 
quency ~ by body particles; niv , density of particles found at frequency ~ at the i-th 
energy level; h, Planck's constant; Fo, Fourier number; and El, integral exponential func- 
tion. 
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TEMPERATURE FIELD IN A HALF-SPACE WITH A FOREIGN INCLUSION 

Yu. M. Kolyano, Yu. M. Krichevets, 
E. G. Ivanik, and V. I. Gavrysh 

UDC 536.24 

A stationary temperature field is studied in a half-space containing a heat-liberat- 
ing disclike foreign inclusion of small size, Convective heat transfer with the 
external medium is realized through its boundary surface. 

Let us consider an isotropic half-space containing a foreign cylindrical inclusion of 
radius R and height I at a distance d from its boundary surface, where uniformly distributed 
internal heat sources of intensity qo act. Let the body under consideration be referred to 
a cylindrical coordinate system. We place the origin at the center of the inclusion. Con- 
vective heat transfer with the external medium of temperature t c is given at the boundary 
surface z = ~ - d. 

To d~termine the stationary temperature field, we have the heat-conduction equation 
[i] 

r ar --of-r + -ffz ~ = - qoS_ ( R - -  r) N (z), (i) 

w h e r e  0 = t--re; N(z) = S _ ( z +  l)--S+(z--l) .  

The boundary conditions are written in the form 

a@ 
~,1 - -  - - c z z o  for 

Oz 
z = - - l - - d ,  0---0 for r ,  z - - + o o ,  

--=0 for r . - - > - o o .  
Or 

(2) 
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We represent the heat-conduction coefficient in the form 

~, (r, z) : %1 -5 ()b - -  L1) S_ (R - -  r) N (z). (3) 

Substituting (3) into (i) and differentiating according to the rule set up in [2], 
we arrive at the equation 

O0 i 6+(r--R) N(z)- -  [ O0 f {T 
(4) 

O0 I 6+ (z - - I ) ]  S_(R--r)}- -q~ S (R--r)N(z), 
Oz I~=l-o Z,o - 

where 

8• (x) = dS• (x) 
dx 

The exact solution of the differential equation (4) can be obtained by the method proposed 
in [i] by using therepresentation of the temperature on the inclusion boundaries in the 

form of Fourier series. However for small size inclusions (d R ~0) �9 , - =--~-~ the problem 

can be simplifiedconsiderably by assuming that the'excess temperature over the inclusion 
thickness varies according to a linear law 

o (r, z) --- Oz + + ~* 

and equals its integral characteristic [3] along the radius 

(5) 

2 R 
~r = [ rOdr. --# (6) 

Here 

o .  = o : = - -  
3 l 

S zOdz. 
21 z 

--I  

Then using (5)-(17), we obtain the following differential equation instead of (4) 

AO=(K~--I)/[ d~z z d~*z ] [L~-5 ~- d r '  r = - a - o  
8+ (r -- R) N (z) -- 

L dz I~=-l+o dz ~=l-o ~o 

Applying the Hankel integral transform in the coordinate r to (8) and the boundary 
conditions (2), we arrive at an ordinary differential equation with constant coefficients 

d~Odz2 ~20-= R (K~-- 1) \ T r  l dr ,=a-o 

L dz I,=-~+o dz 

(7) 

(8) 

(9) 
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and the following 

where 

boundary conditions 

dz 
for z =  - - l - - d ,  O =  O for z ~ o ,  (i0) 

b = i tO J~ (r~) dr. 
0 

Solving 
of the inversion formula, we obtain the expression 

T (r, z) = (1 - -  K D .  _'--7---. F~ (r, z) -f- F~ (r, z) -t- 
r = R - - O  i"~R--O 

.t.. dO"~ d~r 1 F~ (r, z), 
--~-z,=~_o F~(r'z) dz L=_i+oFa(r'z)]-f-----R 

the boundary-value problem (9) and (i0) and then going over to originals by means 

( l l )  

where 

Fi (r, 

T(r,  z ) =  s  z); 
R~qo 

z) = ? Jo (R~) Jo (r~) [~ (z, ~) d~, i = 1, 2; 
0 

F~ (r, z) = i J~ (R~) So (r~) h (z, ~) d~, j = 8, 4, S; 
0 

1 h(z, ~)= --~-[slil~l(z, ~)+ {p~(z, ~)l; 

r (z, T " 

1 
f3 (z, ~) = - ~ -  [exp (--  l~) % (z, ;) - -  % (z, ;)I; 

f, (z, ~)---- ~ [exp l~{h (z, ~ ) -  % (z, ~)]; f8 (z, ~ )  + fl (z, ~).; 

% (z, ;) = exp ;z -~- a (~) exp [-- ~ (2 (l q- d) -[- z)]; % (z, ~) = N (z) - -  

- -  ch  ~ (z + t) S (z q- l) + ch  ~ (z - -  l) S +  (z - -  l); 

%(z, ~ )=  ~,.,l N (z) + [ ch ~" (z q- l) --  sh ~ (z q- t) l S- (z -l- l) I~ 

% (z, ~) "-- 2 sh ~ (z - -  l) S+ (z -- / ) ;  % (z, ~) = 2 sh ~ (z -6 l) S_ (z q- l); 

%z;--az . d~z I A 1 . dt~ r=R-o h ~ .  

-- - -  ; A6 = det [Ah,d; 
dz ]~=~-o- & '  dz ]~=-~+o- & 

0 0 

r 

-t- i Jo (R~) J~ (R~) ~,~ (~) d~, Am,~ = 1 + .t' J~ (R~) ~ m  (~) d~, 
0 0 
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A k follows from A5 because 

k = l ,  2, 3, 4, n =  l, 2, m = 3 ,  4, k ~ n, tn; tp~l(~) = 2K~tl(~); 

[ ] 
% (~) = _ /(  1 ~ - ( -  2t~) [~+ [~ (g), - 2 q + a) ~1; 

r = -~-  [~7(-  [~(~), = 

1 1 ( 2 +  ._~I / __ _...~_1 

[ 1( 
- -  ~z (D 1~ (-- 2dD 0,513~ + (-- 4/~) +[~ (-- 2/~) + ~ [~ (-- 4ID - -  1 -t- 

1. (0 ,5[~+(_  4 l ~ ) _  [~(_ 2 l ~ ) ) ) 1 } ;  +-g- 
3K [._~1 [~]-(_2/~)_[~+(__2l~)][~-[~z(~) , - -2( l -}-d)~] ;  

~a 

-t- ~ (~) , [-- 2 (l -t- d) ~] @~+ (-- 2l~) -- + '  ~-{ (-- 21~) ) ] ; 

%s(~) = K~--____.~I [~:[a(~), - -  2(2l + d)~]; 

%~(~) = _Kr- -  1 [~(__ 2/~) [~+ [~z(~), - -  2d~]; r = (K~--  1)r (~); 

~ , ( ~ )  = K x - -  1 [~ (--2/~) [~+[~z(~), --2d~l; *~ (~)=  K~- -  1 [~+[a(~), -.2d~l; 

1 ~*~ (g) = ~ { [~i- (--  2/~) - -  2t~ -t- 0,5~ (D [~ (--2d~) [(2--[~ (--2ID) [~ (--2l~) .-- 11}; 

( ' } r  (~) = ~z (~._~) [~ (--2d~) 1 - -  [~ (--  4/g) - -  - ~  [1-t- [~ (--2/~) ([~ (--  2/~) - -  2)] ; 

$*~ (~) = [~] (--  2/~) [~+ [~z (~), - -  2 (l -t-- d) ~]; 

R r N-(--2/~)  [~-[~z(~), --2dgl;  K = -~-- (K~--  1); 

[~ (~l) = exp n; [~ (n) = 1 • [~ (,1); ~f  [~ (~), n] = 1 4- r (~_) [~ (n); 

o f  r e p l a c e m e n t  o f  Ank by Ans,  k ,  n = 1 ,  2,  3,  4; 

Ak5 = .f j2 (R~.) %5 (~) d~; ~ 5  (~) = 4l~ 
0 

r 3 , r  r = _ _ [ _ 1  r i = 3 ,  4. 
41~ R~ 
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Fig, i. Dependence of the dimensionless excess temperature T on the relative 
radial coordinate p for Bi = 0.i (a), axial coordinate Z for Bi = 0.i (b) and 

for p = 0 (e). 

Using the electronic computer ES-I035 computations were performed of the dimensionless 
excess temperature T for the relative axial p = r/R and axial Z = z/R coordinates for the 
following initial data:" I/R = i; I/d = 1/20; KI = 419. The numerical results are presented 
in the figure. 

Dependence of the values of T on p are shown in the Fig. a. The temperature in the 
domain of the inclusion 0 ~p ~<~-i decreases according to a linear law, where the lines are 
not parallel for different values of Z. The maximum temperature is achieved at the center 
of the inclusion p = 0, Z = 0 and exceeds the temperature at p = 0, Z = 1 by 1.4 times. 

Dependences of the values of T on Z are represented in Fig. b for different values of 
p. A symmetric temperature distribution is observed in the interval -4~ Z~4. Consequent- 
ly, the function is ~j(z, ~)=0 (]=2, 3, 4, 5) and, therefore, (ii) is simplified. 

The dependence of T on Z is illustrated in Fig, c for different values of the Biot 
criterion. It is seen that as the heat elimination grows the temperature diminishes for 
Z < -i while it is practically independent of the magnitude of the heat elimination coeffi- 

cient for Z = -I. 

NOTATION 

t. temperature field dependent on the cylindrical coordinates r and z; X(r, z), heat- 
conduction coefficient of an inhomogeneous body; XI, Xo, heat-conduction coefficients of the 

main material and the inclusion; gz, heat elimination coefficient from the surface z=--1--d; 

K~ =~o/~i , criterion characterizing the relative heat conduction of the body; st(x) , 

asymmetric unit function; A -- Ir , , r 0r 0--~) + 0z ---$ Laplace operator J~(~) Bessel function 

of the first kind of order v. 
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METHOD OF QUASI-GREEN'S FUNCTIONS FOR A NONSTATIONARY NONLINEAR 

PROBLEM OF THERMAL RADIATION 

M. D. Martynenko, M. A. Zhuravkov, 
and E. A. Gusak 

UDC 517.947.43 

We derive a system of two nonlinear integral equations for the determination of a 
temperature field and the intensity of the incident radiation. The kernels of 
these equations are expressed in terms of a quasi-Green's function. 

One of the methods for increasing the accuracy of thermal calculations consists in con- 
verting a boundary value problem of heat conduction to an equivalent integral equation [I]. 
Various methods can be used for this purpose (see, for example, [2, 4]). In what follows, 
this conversion is effected with the aid of the method of quasi-Green's functions [5]. The 
main advantages of this method are: the explicit form of the kernels of the integrand ex- 
pressions; the incorporation of information relating to the geometry of the domain of inte- 
gration directly into the kernels using the apparatus of the theory of R-functions [6]. 
With an appropriate choice of structure for the normalized equation of the domain of inte- 
gration [6], we obtain Fredholm integral equations of the second kind. 

We consider a nonlinear initial-boundary problem for a heat radiating body in which the 
thermophysical characteristics and heat sources are temperature-independent and in which heat 
exchange with an external medium is present on a convex surface S (see [7]): 

div(s t = - - W ,  P6D,  t > O ,  (1) 

u(P, 0)=~(P), PED, (2) 

Ou 
t + a u = ~ ( P ,  t, u), P6S,  t > O .  (3) 

On 

Here I = ~(~, t) is the thermal conductivity coefficient; c is the specific heat coefficient; 
p is the density of the medium; W is the volumetric heat source or heat sink density, 

(P, t, u) = - - % ( P ,  t) Jr q,(P, t, u), 

4 
where ~o(P, t) = qsource(P, t) + aum(P, t) + r (P, t) is the total heat flow supplied to 
S; ~(P, t, u) = eau ~ is the flow radiated in accordance with the Stefan--Boltzmann law. Here 
Um, in turn, is the temperature of the external medium; a is the Stefan--Boltzmann constant; 
e = e(u) is the degree of blackness of surface S. 

If surface S contains a concave portion S~ or if there is an exchange of radiative flows 
with other surfaces, then in the boundary conditions (3) an additional term e x E appears 
in the function ~,(P, t, u) which accounts for radiation of heat on the concave surface S,, 
and we then use the integral equations of radiant heat exchange 
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